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NUMERICAL PROBLEMS IN SIMULATING TIDAL FLOWS 

VISCOSITY AND THE INFLUENCE OF STRATIFICATION 
WITH A FRICTIONAL-VELOCITY-DEPENDENT EDDY 

ALAN M. DAVIES 
Proudman Oceanographic Laboratory, Bidyton Ohservaiory, Birkenhead, Merseyside LA3 7RA, li. K.  

SUMMARY 

The paper deals with the accurate determination of tidal current profiles in both homogeneous and stratified 
regions when a no-slip condition is used at the seabed with a flow-dependent eddy viscosity related to the 
depth-mean current or the bed frictional velocity. 

Calculations show that it is essential to accurately resolve the high-shear region which occurs at the bed 
and across the pycnocline/thermocline in the case of stratified flow. A computationally accurate and 
economic method of resolving these regions is demonstrated using the Galerkin method with a set of basis 
functions designed to accurately reproduce the high-shear layers which occur in these regions. 

With a flow-independent eddy viscosity a stability analysis can be readily performed and an uncondi- 
tionally stable algorithm developed. However, with a flow-dependent viscosity, in particular a viscosity 
computed from the frictional velocity, a non-linear numerical instability can occur. A method of maintaining 
numerical stability in this case is also described. 

The importance of near-bed resolution to the computed value of the frictional velocity is demonstrated 
and its influence on the total tidal velocity profile is illustrated by a number of idealized calculations using 
various eddy viscosity formulations. 

The influence of stratification on the computed tidal profiles is shown in the latter part of the paper. 
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1. INTRODUCTION 

Although a significant number of three-dimensional models based upon a slip condition at the 
seabed exist in the literature,' very little has been done with no-slip bottom boundary resolution 
modelsg even though this region is important for a number of physical processes (e.g. sediment 
transport). 

The solution of the hydrodynamic equations using a mixed finite difference/spectral ap- 
proach" is now well formulated. Recently the method has been extended in the case of 
a wind-driven flow problem to the use of a mixed basis set" l 3  in which an additional function is 
used to take into account the high-shear surface-wind-driven layer, giving a faster rate of 
convergence of the series." A similar approach has been used at the seabed14 with a slip 
condition. 

In this paper we consider the application of a mixed basis set to the problem of tidal flow with 
a no-slip bottom boundary condition. The basis set is composed of a set of eigenfunctions (modes) 
computed from the eddy viscosity profile and an additional function with a logarithmic profile in 
the near-bed region. By computing the eigenfunctions using an expansion of B-splines with a knot 
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spacing in the near-bed region based on a logarithmic or log-linear distribution, a set of modes 
with a high-shear near-bed profile can be determined. In this case a faster rate of convergence and 
a more accurate solution are determined using only the modal expansion. Initially the eddy 
viscosity is taken as constant in time. Subsequently a number of flow-dependent time-varying 
eddy viscosity formulations are used, namely viscosity proportional to water depth and depth- 
mean ~ u r r e n t . ' ~  l7 A physically interesting formulation is also considered (which has not 
previously been examined with the Galerkin/spectral method), namely one in which the viscosity 
is related to a time varying bed frictional velocity. Such a formulation gives rise to highly 
non-linear terms which can cause numerical instabilities.' * A method of overcoming these 
instabilities is presented in the paper. Calculations clearly show that in the case of a frictional- 
velocity-dependent eddy viscosity it is essential to ensure that the expansion functions can 
adequately resolve the high-shear near-bed gradients. Such a requirement is not so critical for the 
other forms of eddy viscosity. 

In the latter part of the paper the problem of generating an accurate set of modes and resolving 
the high-shear near-bed layer and also the shear layer within the pycnoclinc which occurs in 
stratified flows is considered. 

The importance of the turbulence intensity below, within and above the pycnocline in 
determining the tidal current profile is considered. 

The modal method developed here is a computationally economic means of resolving the 
high-shear layer across the thermocline and at the seabed. The implications for finite difference 
methods or the Galerkin method with discontinuous functions (the finite element method) are 
discussed in the latter part of the paper in terms of resolution problems encountered with the 
spectral/modal method when poor resolution is used to compute the modes. 

Although the method is developed in this paper in terms of a single-point model in the vertical, 
it can be readily extended to a full three-dimensional m 0 d e 1 . ~ ~ ~ .  l 9  

2. POINT MODEL AND NUMERICAL SOLUTION 

2.1. Point model in the vertical 

For a single-point model in the vertical the linear hydrodynamic equations are 

yo=-+-- a p  a ( p- i;), au 
at ax h2a5 
-_ 

with a = z / k  a vertically normalized sigma co-ordinate. In these equations t is time, x, y and z are 
Cartesian co-ordinates and u and v are the x- and y-components of velocity respectively. The 
geostrophic coefficient y is taken as constant, with ,u the vertical eddy viscosity and k the water 
depth. 

In the point model flow is forced by oscillatory pressure gradients dP/ax  and aP/ay; we express 
dP/& and dP/dy as 

aP/ax=h,wcos(wt), (3) 
aP/ ay = k,  o cos (at), (4) 

with h, and k,  the amplitude components of the oscillatory forcing of frequency w. 
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For tidal flow a zero-stress surface boundary condition is applied, namely 

h 2 a  ( 5 )  

with p the density of sea-water. 
At the seabed a no-slip condition is used, i.e. 

2.2. Numerical solution in the vertical 

Only the major steps in solving the hydrodynamic equations using the Galerkin method with 
a mixed basis set will be described, since a more detailed development can be found in References 
10, 11, 14 and 18. 

We express the u- and v-components of velocity as 

where $u(x, y, a, t )  and $u(x, y,  a, t )  are specified external functions sastisfying the essential 
boundary condition (6) and coefficients A r ( x ,  y ,  t )  and B,(x,  y, t) are expansion coefficients in the 
vertical, to be determined using the Galerkin approach, with J(a) the m basis functions. 

Obviously, once the coefficients A,  and B, in expansions (7a) have been obtained, the current at 
any depth can be computed and its value for a range of expansion lengths M can be used to 
examine the rate of convergence of the expansion. 

Another indicator of the accuracy of the solution, which as we will show is particularly 
important when a bed-stress- (frictional-velocity) related eddy viscosity is used (not previously 
examined with the Galerkin/modal method), is the value of the two bed stress components rg and 
7 ;  given by 

where p o  is the eddy viscosity value at the seabed, with $;, $; and f: indicating the vertical 
derivatives of these functions. 

Consider for illustrative purposes the solution of equation (1) using the Galerkin method, 
without rotational effects. Substituting expansions (7a) in equation (1) and applying the Galerkin 
method whereby the resulting equation is multiplied by fi and integrated from the sea surface to 
the sea-bed, we obtain 

where 
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In deriving (8), we have expressed the eddy viscosity as 

cl=.(t)@(.j, (10) 

with a ( f )  a time-varying coefficient and @(c) a specified viscosity profile. Equation (8) can be 
further simplified by applying the essential boundary condition (6j, namely 

f k ( l ) = O  for all k,  (11) 

and the natural boundary condition (5), giving 

Equation (12) is similar to that derived by Davies and AldridgeZo (although they used a slip 
Condition), except for the additional term F, arising from the specified function i j u .  A similar 
equation to (9) can be derived for the v-equation of motion, with the two equations coupled by 
rotation. A detailed description of the solution of the full three-dimensional equations using the 
Galerkin approach can be found in References 10, 11, 14, 19, 21 and 22. 

2.3. An  eigenfunctionlmodal basis set; a spectral approach 

Davies'o.11*'4~18'21 has shown the computational advantages of choosing the 
tions of 

Although any function can be used as a basis function in the Galerkin approach, 
to be eigenfunc- 

with 6, the associated eigenvalues. 
With the boundary conditions (5) and (6), equation (13) is solved subject to 

Equation (12) can be further simplified by using the orthogonality property of eigenfunctions, 
namely 

and normalizing the eigenfunctions such that they are unity at the sea surface; thus 

,f,(O)= 1, r =  1,2, .  . . , m. ( 1  6) 

Writing for convenience expansions (7aj in the form 

where 
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equation (12) simplifies to (at a single point with no x-, y-dependence of u,, 0,) 

where 

2.4. Determination of eigenfunctions 

The eigenvalue problem (13) is solved by computing the eigenfunctions in terms of an 
expansion of fourth-order B-splines (Figure 1). Details are given in Reference 10 and will not be 
repeated here. The fourth-order B-splines are piecewise polynomials which are non-zero only 
over a finite interval. Points along the 0-axis at which the B-spline changes from zero to non-zero 
are termed knots, denoted i i  (Figure 1). The number and positioning of the knots are arbitrary 
and hence the resolution can be increased in any region. Davies"," showed that with a no-slip 
bottom boundary condition in which the bed eddy viscosity was low (p(bed)=O0001 m2 s-', 
a physically realistic value) the knot spacing had to be of the order of O.OOOO5 of the water depth 
in the near-bed region. Davies'l.'' used 60 knots in the vertical with an arbitrary knot spacing in 
order to achieve accurate eigenfunctions. However, in the case of a no-slip bottom boundary 
condition with a near-bed linear increase in eddy viscosity (a physically correct variation) the 
eigenfunctions will have a logarithmic behaviour in the near-bed region23 and hence a logarith- 
mic or near-logarithmic distribution of B-splines would be advantageous. 

This can be readily achieved using a logarithmic transform of the form 

S=ln(Z/S,)/P, with P=ln(Z/lh), where z"= 1 -z,  (194 
or a log-linear transform of the form 

S=[ln($>+(?)]/P, I with b=ln  

In these transformations So is a small parameter determining the fineness of the knot spacing in 
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Figure 1. Distribution B-splines and associated knots with depth 
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the near-bed region. The parameter S, in the log-linear transformation is an arbitrary height 
above the seabed over which the knot distribution is essentially logarithmic, changing to 
a near-linear distribution above this height. By this means an optimal distribution of B-splines in 
the near-bed region suitable for solving the eigenvalue problem is obtained. 

2.5. Determination of the additional functions +, and t/IIj 
Just what form the additional functions $I, and +l. should take to improve the rate of 

convergence of the expansion is dificult to determine. Davies" used piecewise linear functions or 
trigonometric functions scaled with the wind stress to improve the convergence in the surface 
layer in a wind-driven flow problem. An enhanced rate of convergence in the near-bed region with 
a slip bottom boundary condition was obtained using similar functions scaled with the bed 
stress.14 In both these cases the vertical derivative of the functions used in the expansions was 
zero at the sea surface and seabed, leading to a slower rate of convergence in the surface and bed 
boundary layers. In the present case, as we will show later, the bed stress evaluated with the modal 
expansion converges rapidly to the true bed stress, a situation very different from that occurring 
previously' ', l 4  where the stress computed from the expansion remained zero irrespective of the 
number of terms. 

In the near-bed region a logarithmic behaviour of the current profile appears appropriate and 
hence we chose 

+U = I,* ( Z ) ,  *v=I,$I(z) (20a, b) 

with I., and ivl. scaling factors; $(z) is chosen to be consistent with the logarithmic transformation 
(19) and is given by 

$(z)=In(?/E,)/p, with B=ln(;/h), where i= 1 - z .  (214 

For a pressure-driven flow the scaling factors I ,  and Ivl, should be related to the external forces; 
thus 

- 

i, = = i. apj ax, Lt, = % a P / a y ,  W b )  
with I. an arbitrary scaling factor, the magnitude of which has to be specified together with the 
parameter E,  in (21a). This form of scaling with external forcing is consistent with that used 
previously in References 11, 14 and 18, where the magnitude of the additional functions t/I, and 
t / Iv  were scaled with the external wind stress. The influence of variations in E, and I on the 
computed current profile will be examined in the next section. 

2.6. Profile of eddy viscosity 

Consider initially the eddy viscosity profile in homogeneous seas. On the basis of 
measurements in the Irish Seal6,I7 and boundary layer theory, the viscosity should increase 
linearly with height above the seabed up to a height h l  of order (0.1-0.2) h. At the seabed the 
viscosity is given by 

Po =KO u*zo, (22) 
where K O  =0-4 is Von Karman's constant, U ,  is the frictional velocity of order 1 4  cm s- ' and 
Zo is the bed roughness of order 0.1-1 cm, giving ,uo of order 0.05-2 cm2 s-' (00002 m2 s-'). 

Above h ,  the eddy viscosity can be assumed constant (Figure 2, profile (A)) at a value p1 given 
by16,17 

= Klhii, (23) 
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(A) (B) (C) 

Figure 2. Schematic representation of various eddy viscosity profiles V(u) used in the calculations 

with tl the depth-mean tidal velocity and K 1  a constant of order 0.0025. Taking U = 100 cm s- ', 
a typical tidal velocity, and h=40 m, a characteristic shallow-sea depth, gives p1 = 1000 cm2 s-  
(0.1 mz s-').  

An alternative formulation' gives 

pl= Kzii2/w. (24) 

Taking K ,  = 2  x a constant, w =  a typical frequency for tidal motion, and 
U= 100 cm s- gives pl =2000 cm2 s-' (0.2 m2 s-'). Both equations (23) and (24) suggest a p l  : pLo 
ratio of order 1000: 1. 

By analogy with the seabed and from recent results obtained with turbulence energy 
 model^,^^^^ a decrease in viscosity over a distance h,, comparable with the distance h , ,  should 
occur at the sea surface (Figure 2, profile (B)). 

In the case of a stratified sea region where stratification is produced by temperature differences 
(a thermocline) or density differences (a pycnocline), the turbulence and hence the eddy viscosity 
are assumed to be reduced within the pycnocline (thermocline), giving the viscosity profile shown 
in Figure 2, profile (C). In this profile the tidal viscosity is reduced significantly from a value 
,us below the pycnocline to a value pu above it, over the pycnocline thickness h,, with the centre of 
the pycnocline located at a distance d above the seabed (Figure 2, profile (C)). 

2.7. Time integration method 

two-time-level integration method with time step z takes the form 
Considering equation (18) with dP/i?x and F, externally specified functions, a single-step, 

~ ; + 7 -  u; ,3p(t+8r) + Br) 
a, + F, - - i:J( 1 - 8)u; + eu;"], -- - 

t d X  h2 

with 8 a weighting in the range 0 < 0 < 1 and f l  a similar weighting. Obviously with 8 = 0 we obtain 
an explicit time integration method which requires the time step z to satisfy the stability 
condition' 9 7  2o 

t < 2h2 jxc, ,  (26) 
which is computationally prohibitive in shallow water. 
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By time centring the viscosity term with 8 = 0.5, an unconditionally stable integration scheme 
can be obtained if G I ( ' + ~ ' )  is time-invariant.' 9 3  2o However, in many of the calculations performed 
later, &-fir) is determined by the depth-mean currents ti and V computed from 

with 
ri 

The aiternative formulation is the calculation of from U,, the frictional velocity given by 

U ,  =(~B/P)i~Z, (29) 

with zH the total bed stress, 

where T $  and zt; are given by equations (7b). 
Obviously a flow-dependent eddy viscosity or one determined by U ,  introduces a non-linearity 

in (25). This non-linearity is physically important; as shown by Dav ie~ , '~  it is responsible for 
generating the higher harmonics in a numerical model with a no-slip bottom boundary condition. 
The computational consequence of this non-linearity is that if fi is non-zero, a non-linear problem 
has to be solved at each time step, which is computationally impractical. Consequently, in all 
calculations considered later, B was set to zero, i.e. the viscosity term was evaluated using the 
current or frictional velocity ( U , )  at the lower time step. 

In general 0 was set to U=O.5, although as we will show later (see Section 3.3 for numerical 
examples), in shallow water with high viscosity this could produce an instability, particularly with 
a frictional-velocity- ( U ,  -) dependent viscosity. The simple explicit stability criterion suggests 
that instability due to the viscosity term for a given time step will increase with decreasing water 
depth and/or increasing viscosity. Such a finding appears to be borne out in practice, in that 
Davies' * experienced numerical instabilities in very shallow water using a U,-dependent viscos- 
ity with a no-slip condition in a three-dimensional model of the Irish Sea. This non-linear 
instability could, however, be removed by setting O =  1. 

Since the frictional-velocity-dependent viscosity depends upon po (the bed viscosity at the 
previous time step) through equations (7b), it was necessary in this calculation to set a low 
background viscosity, namely pB = 0000 01 mz s- ', when the calculation was started from rest in 
order to generate a bed stress. Also, since the value of U ,  depends on the vertical derivative of the 
function at the seabed through equations (7b), then, as we will show later, it is essential to 
determine this bed derivative accurately. 

2.8. Time-varying eddy viscosity 

In the case of a time-varying flow-related eddy viscosity the viscosity is written as (equation 
(10)) 

P=W@(.), 
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with 
i YO 

a normalized viscosity profile determining the vertical variation in p from the specified function 
V(o)  (Figure 2). 

In the case of a U,-dependent viscosity (equation (22)) TY is given by 

CI=K,KO U , ,  (32) 

where K ,  is an arbitrary constant determining the depth-mean value of viscosity, with the bed 
viscosity depending on the ratios ,uo:pl (Figure 2, profile (A)), etc. used in the calculation. 

Similarly, in the case of U (equation (23)) or Uz (equation (24)) CI is given by 

or 
(33) 

(34) 

3. NUMERICAL CALCULATIONS IN A HOMOGENEOUS SEA 

3.1. Constant-pressure-driven ,flow, h = 10 m, no external function 

In an initial series of calculations, rotational effects were neglected, i.e. y = 0, and eddy viscosity 
profile (A) (Figure2) was used with pl=O.l m2s-', pO=04002mZs- '  and h l = O . t  h, i.e. 
a time-invariant viscosity, and a water depth h= 10 m. Motion was started from rest by 
a suddenly applied and maintained pressure gradient FP/ax= 1 x ms-', aP/Fy=O and the 
model was integrated forwards in time until a steady state, i.e. du/dt=O, was obtained. Since 
rotational effects were neglected and aP/?y = 0, the u-component of velocity remained zero. 

For the problem considered here, the surface stress was zero and y = O ;  then by integrating 
equation (1) through the vertical, it is easy to show that in the steady state the bed stress term 
z ; / p h  must balance the external pressure gradient term. By this means it is possible to determine 
the accuracy of the bed stress computed with the modal expansion. As we will show later, the 
determination of an accurate bed stress is particularly important with a U ,  -dependent viscosity. 

In an initial series of calculations, modes were computed using 50 knots in the vertical and 
a range of knot distributions based on a logarithmic transformation {Table I, knot distributions 
A, B and C).  

If a coarse knot spacing (Table I, knot distribution C) is used at the bed, then the high-shear 
region is not adequately resolved and appears as a more gradual change similar to that found 
with a higher po-value. In essence, the effect of computing modes with a coarse knot spacing in the 
near-bed region is to artificially increase the ,uo-value. 

Profiles of the first few modes computed with knot distribution A are shown in Figure 3. Each 
mode is normalized to unity at the sea surface and is zero at the seabed. A high-shear near-bed 
region is clearly evident in the figure, with the shear decreasing as the bed eddy viscosity increases 
(compare profiles 1 and 2, Figure 3). 

The steady state surface and mid-depth currents together with the bed stress term as the 
number of modes, M ,  in expansions (7a) is increased are shown in Table 11. (In this series of 
calculations the external functions +u and $" were zero.) Table I1 shows that with knot 
distribution A the bed stress term rapidly converges towards its exact value of - 1 x with 
the currents at all depths showing a similar rate of convergence. With knot distribution B, i.e. 
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Table I. Knot distributions used to compute the modal basis set 

Knot 
distribution Knot spacing 

A 
A 
B 
C 
D Specified vertical spacing 

A* 
B* 
C* 

B1 
B2 

Logarithmic distribution with S o =  5.0 x 
Logarithmic distribution with S o =  5.0 x lo-' 
Logarithmic distribution with So=  5.0 x 
Logarithmic distribution with S,=5.0 x 

Log--linear distribution with S,=O.9, S,=2.0 x 
Log-linear distribution with S, =0.9, So=  5.0 x 
Log-linear distribution with S ,  =0.9, So=  5.0 x lo-' 

As knot distribution B in the near-bed region, with a spacing Arr=09002 in the pycnocline 
As knot distribution B1, but with a spacing Arr=0.02 in the pycnocline 

a coarser knot spacing in the near-bed region, the currents at all depths converge rapidly, giving 
identical values to those found with knot distribution A. Although the bed stress converges to 
a value 10% below its exact value, this does not appear to influence the convergence of the 
currents with this formulation of the eddy viscosity. However, with a coarser near-bed knot 
spacing (knot distribution C), not only is the bed stress in the model severely underestimated, but 
the currents at various depths converge to a value below the correct one (Table 11, knot 
distribution C). The lack of near-bed resolution means that the eigenvalues are not computed 
correctly (see Table 111) and this influences the steady state current profile. 

Table I11 shows that the first eigenvalue computed with the coarse knot spacing at the bed 
(knot distribution C) is approximately 20% higher than those determined with other knot 
spacings. This effectively increases the viscosity in the solution. Similar errors, but with a reduced 
magnitude (of the order of 5% in the fifth mode), are evident for the higher eigenvalues (Table 
111), although the higher modes contribute less to the solution and hence the errors in the 
magnitude of these eigenvalues are less important. 

In the case of knot distributions A and B there is a very fine spacing in the near-bed region with 
a much coarser spacing above this. To check that the coarser resolution in the upper part of the 
water column did not influence the solution, the calculation was repeated with knot distribution 
D with over 60 knots in the vertical and a fine distribution in the near-bed region, comparable 
with knot distribution A, together with a fine distribution comparable with knot distribution C in 
the upper part. The currents, bed stresses and eigenvalues computed with this distribution 
(Tables I1 and 111) are comparable with those of knot distributions A and B. The current profiles 
show a very-high-shear near-bed region with a more gradual near-linear variation above this (see 
later results). The nature of this profile and the results of the calculations suggest that it is essential 
to use a set of knots with a very high resolution in the near-bed region when the eddy viscosity is 
low in order to resolve the rapidly changing profile in this area. Above the near-bed region 
a coarser distribution can be applied. The use of a logarithmic or log-linear transformed spacing 
to achieve this appears optimal. 

Although knot distribution C was inadequate when jio=0.0002 m2 s-', such a distribution 
should be accurate for higher po-values, because increasing po reduces the bed shear. This 
assumption was tested using both knot distributions A, B and C based on logarithmic spacing 
and knot distributions A*, B* and C* based on a log-linear spacing (Table I), with 
ido = 00002 m2 s- '  (calculation 1) and increased to p0 =0.002 m2 s- '  (calculation 2). The steady 
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Table 11. Values of surface (u = 0) and mid-depth (a =0.5) velocities (cm s- I )  

and bed stress as a function of number of modes M ,  in expan-ons (7a), with 
$# = $, = 0, using modes computed for knot distributions A, A, B, C and D, 

in a water depth h= 10 m, with a time-invariant eddy viscosity 

Number of modes, M 
1 2 4 6 

Knot distribution A 
u(O = 0) - 10.34 - 10.16 - 10.18 - 10.18 
~(0=0.5)  - 8.90 - 8.94 - 8.93 - 8.93 
t $ / p h  x lo4 - 0.960 - 0.990 - 0.996 - 0.998 

Knot distribution .& 
u(u=O) - 10'34 - 10.16 - 10.1 7 - 1018 
u (c  = 0.5) - 8.90 - 8.95 - 8.92 - 8.9 3 
z$/ph x lo4 -0.960 - 0-990 - 0'996 - 0998 

Knot distribution B 
u(O = 0) - 10.34 - 1016 - 10.17 - 1018 
u(a = 0.5 j - 8.90 - 8.95 - 8.92 - 8.93 
7 i / p h  x lo4 -0.867 -0.895 - 0.900 - 0902 

Knot distribution C 
u(c=O) - 8.36 -8.17 -8.19 -8.19 
u(u=O.5) - 6.89 - 6.96 - 6.94 - 6.94 
t $ / p h  x lo4 - 0042 - 0-044 -0,044 -0.044 

Knot distribution D 
u(a=O) - 10'34 -1016 - 10.18 - 10.18 
U((T =0.5) - 8.90 - 8.95 - 8.93 - 8.93 
r$ /ph  x lo4 - 0.9 59 - 0-990 -0.996 -0.998 

Table 111. Influence of knot distribution on first, second and 
fifth eigenvalues 

Knot Eigenvdlue 
distribution 1 2 5 

A 0.81045 13.475 152.004 
B 0.8 1047 13.475 151.650 
C 1.00801 14,339 158.300 
D 0.81045 13.475 151-616 

state currents computed with 10 modes based on these knot distributions are shown in Table IV. 
It is clear that the currents are not significantly different in calculation 2, although the bed stress 
value computed using knot distributions C and C* is significantly underestimated. The log-linear 
spacing of knot distribution C*, although coarse in the near-bed region, does for a given number 
of knots provide more resolution in the upper part of the water column, which as we will show is 
important when stratification is present (see later). 
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Table IV. Computed surface (a =0) and mid-depth (a =05) velocities (cm s- ') and bed stress using 10 
modes based on knot distributions A, B, C, A*, B* and C*, using viscosity profile (A), with 
pl=O.l m2sC1, p0=0~0002mZs-1 (calculation 1) and pl=O.l m's-', p0=0~002mZs-' (calcu- 

lation 2) 

Logarithmic distribution Log-linear distribution 

A B C A* B* C* 

Calculation 1 
u(a=O) -10'18 -1018 -8.19 -10.18 -10.18 -8.18 
u (a = 0.5) - 8.93 -8.93 -6.94 - 8.93 -8.93 -6.93 
t i l p h  x -0998 -0902 -0,044 -0.998 -0.898 -0.043 

Calculation 2 
u(a = 0) - 7.95 - 7.95 -7.61 - 7.95 -7.95 -7.62 

-6.69 -6.36 u (a = 0.5) - 670 - 6.70 - 6.31 - 6.69 
z i l p h  x -0.999 -0996 -0340 -0997 -0.996 -0.337 

Table V. Computed surface (a = 0), mid-depth (a = 0.5) and near-bed (a=0.95) velocities 
(cms-') and bed stress using 10 modes determined from knot distributions A and B, with 

viscosity computed from h i  (calculation I), U2 (calculation 2) and U, (calculation 3) 

Calculation 1 Calculation 2 Calculation 3 

A B A B A B 

u(a=O) -68.20 -68-19 -41.19 -41.19 -743.2 -778.5 
#(a = 0.5) -59.82 -59.81 -36'14 -36.13 -651'9 -682.9 
~(0.95) -36.76 -36.75 -22.20 -22.19 -4006 -419'6 
z i / p h  x 0.999 0.903 0.999 0.903 0.999 0.903 

Obviously in a series of calculations in which the eddy viscosity remains independent of the 
flow, any errors in the flow field do not feed back to the calculation through the eddy viscosity 
and hence compound the error in the total solution. However, physically the viscosity should 
depend on the flow in terms of either hzi (equation (23)), ti2 (equation (24)) or U ,  (equation (22)). 

To examine the influence of knot resolution with a flow-dependent viscosity, the previous series 
of calculations were repeated using viscosity profile (A) with a p l : p o  ratio of 0*1-04002, 
K1 = 0.0025 (equation (23)) (calculation l), K , / o  = 0.2 (equation (24)) (calculation 2) and K ,  = 5 
(equation (22)) (calculation 3). The steady state bed stresses and currents computed with knot 
distributions A and B and these various flow-dependent viscosity formulations are given in Table 
V. The currents at various depths computed using 10 modes based on knot distributions A and 
B by calculations 1 and 2 (hzi or ii2-dependent viscosity) are not significantly different despite 
a 10% difference in bed stress. However, the currents computed with a U,-dependent viscosity 
(calculation 3) are of the order of 5% higher with knot distribution B than with distribution A. 
This can presumably be attributed to the lower viscosity due to the lower bed stress and hence 
U, with knot distribution B. As demonstrated previously, the coarser the knot spacing in the 
near-bed region, the lower is the bed stress and hence the greater is the error in any solution using 
a U,-dependent viscosity. In the next subsection we will examine whether the addition of an 
external function can improve the near-bed shear stress when the modes are computed using 
a coarse knot spacing. 
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3.2. Constant-pressure-driven p o w ,  h = 10 m, with an external function 

In this series of calculations we again use viscosity profile (A) with pl  =0.1 m2 s-', 
,uo=O~OO02 m2 s-'  and hl  =0.1 h. Also, a water depth h =  10 m with aP/ax  as before, aP/ay=O 
and y = 0 was employed. The steady state currents and bed stress magnitudes computed using 10 
modes determined from knot distributions A, B and C, initially with no external function and 
then with a range of external function scaling parameters, are shown in Table VI. 

Consider initially the solution based on modes computed with knot distribution C. Adding an 
external function with E ,  =0.0001 and A= 1 slightly improves the bed stress value, while increas- 
ing 1 to 10 leads to a significant improvement in the bed stress, although there is now a significant 
error in the computed currents. Decreasing E ,  to 0.00001 with 1 = 1 also improves the bed stress, 
although again there is an appreciable error in the computed currents. An external function with 
these parameters improves the accuracy of the bed stress computed using modes determined from 
knot distribution B, although again there is a significant error in the computed velocity. A similar 
error in velocity occurred with modes based on knot distribution A. 

These calculations suggest that the addition of an external logarithmic function with carefully 
chosen E ,  and 1 can certainly improve the accuracy of the bed stress computed using a modal 
expansion based on a coarse knot spacing, although the accuracy of the current may be reduced. 
The major problem of adding an external function of a logarithmic nature is how to decide upon 
the choice of E ,  and 1. Obviously in the present case when the bed stress is known, optimal E ,  and 
1 could be chosen. In a more realistic calculation it would be impossible to make the optimal 
choice and the consequence of choosing inappropriate values of E ,  and 1 would be erroneous 
answers. Since the modes are computed only once prior to the integration of the hydrodynamic 
equations, a better alternative to the application of an external function would appear to be the 
accurate determination of the modes using a large number of knots with a logarithmic or 

Table VI. Computed surface (a = 0) and mid-depth (a = 0.5) velocities (cm s- I )  and bed 
stress determined using 10 modes based on knot distributions A, B and C, initially with 
no external function, then with an external function using a range of scaling parameters 

1 and E ,  

No external a =  1 a =  io a =  1 
function E,  = 0~0001 E, = 0.0001 E,  = O~OOoO1 

Knot distribution A 
u(a = 0) - 10.18 -9.12 0.41 - 8.86 
u (a  = 0.5) -6.13 - 5.33 1.82 - 5.07 
# p h  x lo4 - 0.999 - 0.899 + 0.035 - 1.012 

Knot distribution B 
u(a = 0) - 10'18 -9.12 0.40 - 8.86 
~ ( a  = 0.5) -6.13 - 5.33 1.81 - 5.08 
ZGIph x lo4 - 0.903 -0.811 + 0.095 - 0.936 

Knot distribution C 
u(a=O) 
u(a=0.5) 
zglph x lo4 

-8.19 - 7.40 - 0.3 1 - 7.38 
-4.14 - 3.02 1.10 - 3.60 
- 0.044 - 0.059 -0'196 - 0.239 
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log-linear spacing and a small value of so chosen so that the knot transformation ensures that the 
modes are accurately determined in the near-bed high-shear layer. 

3.3. Constant-pressure-driven JIow, h = I m, no external junction 

Tn the previous series of calculations the viscosity term was centred in time and the solution did 
not exhibit any signs of numerical instability with a time step of 360 s. However, as demonstrated 
earlier, if a flow-dependent viscosity is used, there exists the possibility of a non-linear-type 
instability, since the flow-dependent viscosity is evaluated at a lower time step. 

To examine this problem, the previous series of calculations were repeated with no external 
function, a ,ul:,uo ratio of 01-0.0002 and the eddy viscosity computed in terms of hii with 
K ,  =0.0025 (calculation l), U 2  with K2/w=0.2  (calculation 2) and U ,  with K ,  = 5 (calculation 3),  
with modes based on knot distributions A, B and D and 0-values of 0.5 or 1. The currents at 
a number of depths and bed stresses computed using an expansion of 10 modes based on these 
knot distributions are shown in Table VII. In practice the solutions with the eddy viscosity time 
centred (0=0.5) and at the higher time step (0=  1) were both found to be stable, with no 
differences in current magnitudes. In the case of calculations 1 and 2 all three knot distributions 
yielded identical flow fields, although the bed stress with knot distribution B was underestimated 
by 107'0. In the case of the U,-dependent flow field some slight differences in current were found 
(Table VII). 

When pl was increased to 10, a significant time step oscillation was obtained when 0=0.5, 
which disappeared when 8 = 1 (Table VIII), suggesting that for flow-dependent viscosities in 
shallow water a value of H =  1 significantly enhances the stability of the solution, a finding 
consistent with that of Davies.'* As in the previous series of calculations, the modes determined 
using a coarse knot spacing in the near-bed region (knot distribution C) significantly underesti- 
mate the bed shear stress (Table VIII). 

Table VII. Computed currents (cms-I) and bed stress in a water depth 
h =  1 m using 10 modes determined from knot distributions A, B and D, 
with viscosity computed from hi (calculation I), U 2  (calculation 2) and 

U, (calculation 3) 

u(a = 0) u(a =0.5) u(a = 0-95) .r$/ph x lo4 

A 
B 
D 

A 
B 
D 

A 
B 
D 

-21.56 
-21.56 
-21.56 

- 8.87 

- 8.87 
- 8.87 

- 20.1 5 
- 20.97 
-20'15 

Calculation 1 
- 18.92 - 1162 
- 18.92 - 11.62 
- 18.92 - 11-62 

Calculation 2 
- 7.79 - 4.78 
- 7.78 - 4.78 
- 7.78 - 4.78 

Calculation 3 
- 17.68 - 10.86 
- 18.39 - 11.30 
- 17-68 - 10.86 

-0'9990 
- 0.9027 
- 0.9989 

- 0.9990 
-0.9027 
- 0-9989 

-0.9992 
- 0'9027 
-0.9989 
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Table VIII. Computed currents and bed stress (using a U,-dependent viscosity) with 
h = 1 m at consecutive time steps t and t + T at near-steady state, determined with 
viscosity time-centred (calculation 1) and evaluated at the higher time step (calcu- 

lation 2) using various knot distributions 

Calculation 1 Calculation 2 

t t f T  t t + z  

u(O = 0) 
u(o =0.5) 
ujo = 0.95) 
s",ph x lo4 

u(o=O) 
u(o=O.5) 
u(o = 0.95) 
z$ /ph  x lo4 

u(a = 0) 
~ ( 0 = 0 . 5 )  
u(~r=O.95) 
#ph x lo4 

Knot distribution A 
-031 -0.10 
-0.31 - 0.07 
- 0.5 1 0-23 

2.24 -4.63 

Knot distribution C 
- 1.71 - 1.39 
- 1.56 - 1.24 
- 1.55 -0.81 
- 0028 -0.058 

Knot distribution D 
-0.45 -000 
- 0.39 - 0.02 
- 0.47 017 

1.61 -4.30 

-039 
-0.36 
- 0.27 
- 0.897 

- 1.53 
- 1.38 
- 0.97 
- 0.042 

-037 
- 0.34 
- 0.25 
- 0.9998 

- 039 
-0.36 
- 0.27 
- 0,897 

- 1.53 
- 1.38 
- 097 
- 0.042 

-037 
- 0.34 
- 025 
- 0.9998 

4. NUMERICAL CALCULATIONS IN A STRATIFIED SEA 

4.1. Modul structure 

In the previous series of calculations we considered eddy viscosity profiles characteristic of 
well-mixed homogeneous sea regions. The calculations clearly showed that the vertical profiles of 
currents and associated modes were characterized by a high-shear near-bed region with a more 
gradually varying profile above it. In this case eigenfunctions (modes) could be accurately 
computed using a logarithmic or log-linear knot spacing provided that a high resolution was 
maintained in the near-bed region. For a fixed number of knots, high resolution in the near-bed 
region obviously gives rise to poorer resolution above this layer. In the case of a homogeneous 
flow this is not particularly important, since the current only varies slowly through the vertical in 
the upper part of the water column. 

However, for the case of tidal flow in a stratified sea the influence of the stratification is to 
reduce the tidal turbulence in the upper part of the water column, giving rise (as will be shown 
later) to a high-shear layer coinciding with the region of the water column (the pycnocline) where 
eddy viscosity is reduced. Consequently it is necessary to use a set of modes based on a knot 
distribution which can resolve this high-shear region as well as the near-bed shear layer. 

Typically stratification caused by thermal effects (heating at the sea surface) in a tidally 
dominated region such as the North Sea occurs in water depths of the order of 50 m or deeper, 
with tidal currents of the order of 50 cm s-'  or less. In shallower water or with stronger tidal 
currents, tidally induced turbulence produced at the seabed will normally mix the water column, 
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removing any effects of stratification. Although the primary aim of this paper is to examine 
numerical problems associated with a no-slip bottom boundary condition and the presence of 
mid-water stratification, we will subsequently consider the physical effects of stratification on 
tidal currents. For this reason we have chosen physically realistic values of water depth h = 50 m 
and tidal current strength (see later). 

In an initial series of calculations to determine an optimal knot distribution in a stratified water 
column, water depth h = 50 m, stratification was assumed to occur at mid-water, d = 25 m 
(Figure2, profile (C)), with h,=l  m (a sharp pycnocline) and h ,=2  m. Viscosity values of 
po =0.0001, ,u5 =0.1 and p, =0.0001 m2 s-  I were used in the vertical. A low value of p, corres- 
ponds to an intcnse stable pycnocline which inhibits tidal turbulence in the upper part of the 
water column. 

The first four modes computed using knot distribution A with viscosity profile (C)  (Figure 2) 
are shown in Figure 4 profile (a). Although this distribution is ideal for computing modes in the 
case of a single high-shear bottom boundary layer, there are very few knots in the region of the 
pycnocline and the upper half of the water column and hence the high-shear layer associated with 
the pycnocline is not resolved. Also, it is clearly evident from Figure 4, profile (a) that there are 
a number of spurious ‘ripples’ in the eigenfunction profiles. Using knot distribution A gives 
a coarse, but still satisfactory distribution of knots in the near bed-region (see bed stresses in 
Table II), but with better resolution in the upper part of the water column. The first four modes 
computed with this knot distribution are shown in Figure 4. profile (b). A comparison of profiles 
(a) and (b) shows that the number of ripples in the first few modes is reduced; however, physically 
unrealistic ripples occur in the fourth mode. 

Improved resolution in the upper part of the water column can obviously be obtained using 
knot distribution B, which is also satisfactory in the near-bed region (Table IT). However, this still 
does not have enough resolution within the pycnocline. This problem can be overcome by using 
knot distribution B in the bottom 30-40m of the water column, below the pycnocline, with 
a uniform fine knot spacing above this, or a telescoping knot spacing with its finest grid (grid 
spacing Ao = 0.0002) in the centre of the pycnocline (knot distribution Bl). 

The first four modes computed with this knot distribution are shown in Figure 4, profile (c). It 
is evident from a comparison of profiles (b) and (c) that it is essential to have high resolution in the 
region of the pycnocline if the associated high-shear region is to be resolved. Obviously adding 
a refined knot distribution within the pycnocline whilst maintaining a logarithmic distribution in 
the near-bed region increases the total number of knots in the case of knot distributions B and B1 
from 50 knots to over 100 knots. However, since the modes are computed prior to integrating the 
hydrodynamic equations, the computational overhead is small. 

The accuracy of the various knot distributions in computing tidal amplitude and phase will be 
considered in the next subsection. 

4.2. Tidul calculations 

In this series of calculations the motion was driven by a pressure forcing of 12 h period (tidal 
period) in the x-direction, with h,=0.2 (chosen to give an inviscid flow of the order of 50 cm SKI) 

and h,=O. Since rotational effects are important in determining tidal current profiles, a value of 
y=0~00012 (a value used previously by Davies2’), appropriate to the latitude of the North 
Sea, was used. The hydrodynamic equations were integrated forwards in time until the effects of 
the initial conditions of Lero motion had been removed and a periodic solution was obtained 
which was then Fourier analysed to give the amplitude and phase of the u- and u-ccimponents of 
velocity at a number of depths, 
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Figure 4. Vertical variation of the first four rnodcs in a stratificd region computed with (a) knot distribution A, (b) knot 
distribution A and (c) knot distribution B1 
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In an initial series of calculations to examine the modal convergence and the accuracy of the 
computed modes, an identical set of parameters to those used previously, namely 11 = 50 m, 
~Lg=~L,=0~0001m2s~1,~s=0~1mZs~1,d=25m,h,=1 m a n d h , = 2 m ,  wasemployed. 

This set of parameters corresponds to a very intense pycnocline which effectively suppresses 
tidal turbulence in the upper part of the water column. As such it provides a rigorous test of the 
modal expansion ability to resolve the high shear in the pycnocline region. Also, since the 
turbulence above the pycnocline is small, the computed surface current amplitudes and phases 
should correspond to their inviscid values of h, = 0.626 m s-  ', y, = 270°, h,, = 0 5  1 7 m s- ' and 
go = 180", which provides an independent test of the model's accuracy. 

Profiles of the amplitude and phase of the u- and v-components of current computed using 10 
modes based on knot distributions A, B2 and B1 are shown in Figure 5. Knot distributions B1 

h~ tmls) 
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0.0 I I I I 
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0.4 0.8 0.2 I I I 0.8 1.0 - 

Figure 5. Profiles oftidal amplitude h., h, (m s - ' )  and phase gu, I/. computed with (a) knot distribution A ( -), (b) knot 
distribution B2 (----) and (c) knot distribution B1 (. .- . .)  
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Figure 5. (Continued) 

and B2 are identical to knot distribution centred within the pycnocline and the region above 
containing 10 knot intervals. In knot distribution €31 a fine knot spacing (A0=0.0002) is used 
within the pycnocline, with a coarser knot spacing (A0 = 0.02) used in knot distribution B2. The 
accuracy of this coarser knot spacing is considered later. 

Clearly, as the number of knots within the pycnocline used to compute the modes increases, the 
spurious 'ripples' which are evident in Figure 5, profiles (a) (see in particular the phase go of the 
v-component of current) are reduced. However, there are still some spurious 'ripples' in the 
amplitude of the u- and u-components of velocity (Figure 5, profiles (b)) in the region above the 
pycnocline computed with knot distribution B2 (a coarse knot spacing in the pycnocline), 
although these are removed when the resolution is enhanced in this area (Figure 5, profiles (c), 
knot distribution Bl). 

It is also evident from Figure 5 that as the resolution in the pycnocline is improved, the abrupt 
change in current amplitude across the pycnocline is accurately resolved and the surface currents 
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reach their freestream values. This is clearly evident in Figure 5,  profiles (c), where above the 
pycnocline in the upper 20% of the water column the current magnitude does not vary in the 
vertical and is shear-free. 

This series of calculations has clearly illustrated the importance of using a high knot resolution 
both in the near-bed region and in the high-shear region across the pycnocline when computing 
the modes in order to accurately resolve these regions. Clearly, with inadequate resolution in the 
pycnoclinc (knot distribution B2), spurious oscillations occur, the pycnocline is not resolved 
accurately and there are significant errors in the computed currents. 

In this calculation we have considered a very strong pycnocline to demonstrate problems 
associated with a lack of vertical resolution. In order to understand the role of p5 and pu (Figure 2, 
profile (C)) in determining the current variation across the pycnocline, hence the shear and the 
required vertical resolution, i t  is instructive to consider the previous problem with a range of 
pu-values and thicknesses h, of the pycnocline. In order to understand these results, it is necessary 
to consider initially the homogeneous situation (Figure 2, profile (A)) for two cases, namely 
pl =09001 m2 s-  the value of pu used in the previous calculation, and pl =0.1 m2 s-', the value 
of pq used earlier. In these calculations p,=O~OOOl m2 s- '  with h ,  =O.lh and h=50 m. 

Vertical profiles of h,, yu, h, and g, with p l  =0-0001 m2 sK1 are shown in Figure 6, profiles (a), 
with similar profiles for pl = 0 1  mZs- '  in Figure 6, profiles (b). It is evident that with 
p 1  =0.0001 m2 s-  the current increases rapidly with height above the seabed, exceeds its 
freestream value and then falls to the freestream velocity. Calculations show that as p1 is 
increased, bed frictional effects extend further up the water column and the region of freestream 
flow is reduced. Eventually the portion of the water column where the freestream velocity is 
exceeded intersects the sea surface. Further increases in eddy viscosity give a reduced surface 
current, which falls below its freestream value (Figure 6, profiles (b)). Similar effects can be seen in 
the phase, which is reduced significantly below its freestream value (compare Figure 6, profiles (a) 
and (b)). 

Figure 6 can be used to gain some insight into the nature of the processes producing the profiles 
of currents in the stratified casc (Figure 5, profiles (c)). Considering initially the upper part of the 
profile shown in Figure 5,  profiles (c), this is analogous to the lower half of Figure 6, profiles (a), 
since ps =pl =0.0001 mz s- '  in both cases. In Figure 6, profiles (a) the high-shear bed layer is 
produced by the retarding force of bed turbulence; in Figure 5, profiles (c) it is produced by 
turbulence at the base of the pycnocline. Sincc the viscosity in both cases is low in the upper part 
of the water column, the profile above the pycnocline exhibits the characteristic 'overshoot', 
falling back to its freestream velocity. Below the pycnocline, since ps  = p l ,  the velocity profile 
(Figure 5, profiles (c)) is analogous to the lower half of Figure 6, profiles (b), showing a high-shear 
bed region with a slowly increasing velocity above it. A similar explanation holds for the vertical 
variation of the phase. 

Increasing the viscosity in the region above thc pycnocline from pu = 0.0001 to 0.0005 m2 s 
reduces, as we would expect from Figure 6,  the region of free stream flow (Figure 7, profiles (a)), 
while a further increase in viscosity to pu =0.01 m2 5 -  ' removes the region of free-stream flow and 
reduces the surface currents and phases below their freestream values (Figure 7, profiles (b)). 

Maintaining these values of viscosity but increasing the thickness h, to 15 m reduces the shear 
across the pycnocline. giving profiles of current amplitude and phase exhibiting little shear in the 
region of the pycnocline (Figure 7, profiles (c)). As h, increases, both the surface current and phase 
are reduced below those found previously (compare Figure 7, profiles (c) and (b)). 

Obviously, as h, and pu are increased, the profile will tend towards that found for a homogene- 
ous region (Figure 6, profiles (b)), with the surface current reduced below its freestream value and 
only a small phase diffcrence between the sea surface and the seabed. 
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The implications for the vertical knot resolutions used to compute the modes in this series of 
calculations can be clearly identified. (Similar implications using finite elements or a finite 
difference grid in the vertical also apply.) As in the homogeneous case, it is essential to maintain 
a high knot resolution in the bottom boundary layer when computing the modes in order to 
accurately resolve the near-bed shear layer. Obviously the greater thc shear in this layer, the finer 
is the knot resolution required and the more important it is to use a logarithmic transformation. 
A logarithmic transformation giving the order of 10 knots in the bed shear layer would appear to 
be a necessary requirement. In a time-evolving problem in which the thickness of the bottom 
boundary layer increases or decreases and near-bed shear changes, the knot spacing should be 
sufficiently fine to resolve the largest shear likely to occur in the calculation if accuracy is to be 
maintained. Also, in the case of a sharp pycnocline, characterized by h, of the order of a few 
metres and a significant difference between p,, and pb (of the order of two orders of magnitude), it 

1.8 1.0 1.a 1.4 

I I 1: 

Figure 7. Profiles of tidal amplitude h,, h, (ms I )  and phase y,,y. computed with (a)an intense pycnocline 
p,,=0-0005m2s-', h,=2m (-), (b)a weaker pycnocline, p.=O.Ol m's-', h ,=2m (----) and (c)a very diffuse 

pycnocline, p,=0.01m2s-1, h,=15m(. - . . . )  
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Figure 7. (Continued) 

is essential to use a high knot resolution in the region of the pycnocline when computing the 
modes in order to maintain accuracy, but as the pycnocline weakens, the shear across it will 
diminish and the knot resolution can be reduced when the modes are computed. However, since 
the modes are only computed once and the time-consuming part of the calculation, namely the 
integration of the modes through time, is independent of the number of knots used to compute 
them, then there is not a major saving in computer time to be gained by reducing the number of 
knots. 

It is important to note that the above conclusions concerning knot spacing are based on the use 
of fourth order B-splines (high-order elements). In the case of the more conventional second- 
order finite difference grid approach or low-order finite element method a higher resolution 
would be required to maintain this level of accuracy. In any time-stepping approach this would 
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have a high computational overhead in both computer time and memory. By using the modal 
approach developed here, high resolution is built into the modes and an accurate solution can be 
obtained with a small number of modes. 

In the case of a flow-related eddy viscosity in a stratified region, as expected with a U,- 
dependent viscosity, calculations show that it is essential to resolve the high-shear near-bed 
region. In the case of a i2- or hi-dcpendent viscosity the resolution is of less importance, although 
it is necessary to ensure that there is sufficient resolution in the pycnocline region to accurately 
reproduce the depth-mean currents. 

5. CONCLUDING REMARKS 

By using the Galerkin method in the vertical with an expansion of basis functions, chosen as 
eigenfunctions (modes) of the eddy viscosity profile, a computationally economic means of 
resolving the high-shear bottom boundary layer can be obtained. Calculations show that the 
modal expansion converges rapidly and hence the method is computationally economic in terms 
of computer time and memory. However, it is essential to ensure that the modes are computed 
accurately, particularly in the near-bed region, if the modal expansion is to converge to the 
correct answer and the computed bed stress is to be accurately determined. A method of ensuring 
this, namely by computing the eigenfunctions (modes) using an expansion of B-splines with the 
knot spacing having a logarithmic or log-linear distribution, has been presented in this paper. 
Calculations illustrate that the alternative method of improving the accuracy of the expansion in 
the near-bed region using a mixed basis set involving a logarithmic function can give erroneous 
current profiles and bed stresses. Although this approach may be more successful with other basis 
functions, e.g. Legendre  polynomial^,^ it appears essential to test the accuracy of any computed 
bed stress using the steady state pressure-driven flow problem presented here. Since the eigenfun- 
ctions are computed once, prior to the numerical integration of the hydrodynamic equations, 
there is little computational overhead in using a very fine knot distribution. This would not be so 
if an expansion of B-splines using a fine knot spacing or finite difference grid were used directly in 
the numerical integration, since then the computational overhead would be large. 

Solutions computed with a flow-dependent eddy viscosity illustrate that the vertical resolution 
is important not only in determining the correct current profile but also in ensuring the 
appropriate eddy viscosity value which feeds back to the current profile. This is particularly 
important in the case of a no-slip condition with the viscosity computed from a frictional velocity. 
If the high-shear bottom boundary layer is not correctly resolved, then the frictional velocity is 
underestimated and an incorrect current profile is determined. In a model using a finite difference 
grid in the vertical a significant number of grid boxes, of the order of 50,’,’’ is required, leading to 
a heavy computational overhead. The present method avoids this problem, since once the modes 
have been computed, it is only necessary to store the modal coefficients, of the order of 10, at each 
horizontal grid point in a three-dimensional model. Since a modal model can be integrated with 
a time step identical to that used in a three-dimensional grid box model,’ a saving of a factor of 
five to 10 in computer time and memory might be expected from a linear modal model compared 
with the same horizontal resolution finite difference model. 

In the case of a flow-dependent eddy viscosity the viscosity term in thc hydrodynamic 
equations is non-linear and the standard stability analysis cannot guarantee a stable solution. In 
shallow water, particularly with a frictional-velocity-dependent eddy viscosity centred in time, 
numerical instabilities can arise which rapidly mask the true solution in a three-dimensional 
simulation.’* However, this problem is removed when the coefficients in the modal solution are 
evaluated at a higher time step. 
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For stratified flow, besides near-bed resolution, the accurate determination of the modal 
structure within the pycnocline is essential. Poor modal resolution gives erroneous results which 
do not reproduce the shear across the pycnocline and which exhibit spurious ripples. Obviously 
with a finite difference approach, high resolution in the near-bed region and within the pycnocline 
would involve a large computational effort which the modal method avoids. Calculations using 
an accurate set of modes clearly illustrate the importance of the pycnocline thickness and the 
viscosity both within and above the pycnocline in determining the profiles of current amplitude 
and phase. 

Obviously in a three-dimensional calculation, if the stratification evolved in time to such an 
extent that the original choice of knot spacing could not resolve the new flow field and it was 
necessary to re-project the flow onto a new knot distribution and re-compute the modes, there 
would be a heavy computational penalty. However, in the majority of calculations this would not 
occur, and in any series of calculations in which the density field was treated diagnostically, the 
present approach would be computationally advantageous. 

Further calculations using the modal approach developed in this paper to interpret results 
from recent field measurements of tidal profiles in stratified regions are in progress and will be 
reported in the oceanographic literature. 
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